Parámetros electrocardiográficos en caballos Criollo Colombiano pacientes de la Clínica Veterinaria Lasallista

Trabajo de grado para optar el título de Médico Veterinario

Alejandro Saldarriaga Restrepo

Asesora
Silvia Posada Arias
Médica Veterinaria. Adm Emp. MSc. (c) PhD

Corporación Universitaria Lasallista
Facultad de Ciencias Administrativas y Agropecuarias
Medicina Veterinaria
Caldas, Antioquia
2016
TABLA DE CONTENIDO

INTRODUCCIÓN

1. JUSTIFICACIÓN .. 6
2. OBJETIVOS .. 8
 2.1 Objetivo general .. 8
 2.2 Objetivos específicos 8
3. MARCO TEÓRICO ... 9
 3.1 Anatomía cardiaca .. 9
 3.2 Actividad eléctrica del corazón 9
 3.3 Electrocardiograma 10
4. MATERIALES Y MÉTODOS 12
 4.1 Animales .. 12
 4.2 Electrocardiogramas 12
 4.3 Recolección de la información 13
 4.4 Análisis de la Información 13
5. RESULTADOS ... 14
 5.1 Animales de 1 a 5 años (25) 14
 5.2 Animales de 6 a 10 años (21) 15
 5.3 Animales mayores de 11 años (11) 16
 5.4 Animales totales (57) 17
6. DISCUSIÓN ... 19
7. CONCLUSIONES ... 27
REFERENCIAS ... 28
RESUMEN

Las lesiones cardiacas en los equinos no se manifiestan de una manera tan habitual como en otras especies animales, sin embargo existen alteraciones que requieren ser diagnosticadas correctamente para evaluar el futuro atlético del animal. La electrocardiografía es un método no invasivo adecuado para evaluar algunas de las características cardiacas en equinos donde se puede observar la efectividad de adaptación a un ejercicio o entrenamiento especial como lo hacen los Caballos Criollo Colombiano (CCC) donde son utilizados principalmente como animales de exhibición por sus vistosos y particulares pasos, siendo actualmente la raza equina más importante en el país. Por el poco conocimiento en el área cardiológica en los equinos mencionados, el objetivo de este estudio fue describir los trazados electrocardiográficos de 57 CCC pacientes de la Clínica Veterinaria Lasallista, con alta previa y sin alteraciones clínicas evidentes.

Palabras clave: electrocardiografía, cardiología, base ápex, Caballo Criollo Colombiano, equino.
INTRODUCCIÓN

La electrocardiografía (ECG) es un método no invasivo que fue acondicionado para evaluar algunas de las características fisiológicas cardíacas en equinos pudiendo identificar así qué animales pueden estar mejor adaptados o acondicionados a un ejercicio o cuáles son las posibles pérdidas de performance. A diferencia de los perros y los gatos, es difícil siempre tener la evaluación cardíaca con este método, ya sea por transporte del equino, o el uso del ECG en campo. La ECG tiene una enorme importancia en la cardiología veterinaria, ya que ofrece información completa sobre: frecuencia cardíaca, ritmo cardíaco, desviación del eje, evaluación de agrandamiento de las cámaras cardíacas (en pequeñas especies, en equinos por tener su gran profundidad del sistema eléctrico cardíaco, no es fiable esta evaluación. En ellos se evalúa anormalidades en la conducción eléctrica cardíaca) (Santamarina, 1995).

Los principales problemas encontrados y reportados son las arritmias cardíacas que pueden ser primarias (origen en el corazón), o secundarias por problemas metabólicos y alteraciones electrolíticas, tales como hipopotasemia e hipomagnesemia, entre otras (Marr, 2004).

En Colombia no es frecuente la utilización de este método en la clínica veterinaria equina, quizás debido a que no hay estudios de caracterización de los parámetros electrocardiográficos en caballos propios de la raza registrada y gracias a
ello, pueden pasar algunas enfermedades cardiacas desapercibidas al no realizar un adecuado diagnóstico durante la evaluación clínica.

Este estudio tuvo como objetivo describir los trazados electrocardiográficos en derivación base ápex y la correlación de algunos de ellos con el peso, sexo y edad, en 57 equinos de raza Criollo Colombiano pacientes de la Clínica Veterinaria Lasallista, con alta previa y sin alteraciones clínicas evidentes.
1 JUSTIFICACIÓN

Los Caballos Criollo Colombianos (CCC) son equinos autóctonos que se utilizan principalmente como animales de campo y de exhibición por sus vistosos y particulares pasos, siendo actualmente la raza equina más importante en el país. El tipo de esfuerzo que realiza este animal es totalmente distinto al caso de caballos de carreras, endurance o polo; razas en las cuales se han utilizado estas importantes ayudas diagnósticas para evaluar posibles inadaptaciones al ejercicio; esto es debido a que las lesiones cardiacas en los caballos no se manifiesten de una manera tan habitual como las pequeñas especies. Sin embargo, aunque la frecuencia de cardiopatías no sea tan común en medicina equina, existen numerosas e importantes lesiones que es necesario diagnosticar correctamente, además de valorar adecuadamente su importancia clínica, pues en ocasiones se manifiestan trastornos que no revisten gravedad ni influencia en la actividad diaria del animal o en la capacidad deportiva del caballo atleta. Sin embargo los diferentes métodos de exploración utilizados en medicina equina para el diagnóstico de las enfermedades cardiacas, como son la auscultación y el registro de los sonidos mediante fonocardiografía, nos aportan solo parte de la información de lo que ocurre en el músculo cardiaco (Mcguirk, 2010).

La electrocardiografía tiene una enorme importancia en la medicina veterinaria. La información que nos ofrece en relación con la frecuencia cardíaca, ritmo cardíaco, desviación del eje, agrandamiento de las cámaras cardíacas o anormalidades de la
conducción supone un complemento inestimable en el marco de la cardiología veterinaria (Santamaria, 1995). Son varios los estudios publicados respecto a la utilización de métodos diagnósticos complementarios en cardiología equina, como el electrocardiograma (ECG); a pesar de ello aún no se tienen datos de referencia para el caso del Caballo Criollo Colombiano (CCC), el cual se encuentra expuesto a un tipo de ejercicio diferente al de otras razas, pues debe realizar una serie de movimientos en un tiempo determinado y la calidad de los mismos depende de un excelente desempeño físico.
2 OBJETIVOS

2.1 Objetivo general

Describir algunas características electrocardiográficas en equinos CCC hospitalizados en la Clínica Veterinaria Lasallista, en reposo previo a su alta hospitalaria.

2.2 Objetivos específicos

- Describir los trazados electrocardiográficos en base ápex en equinos CCC hospitalizados en la Clínica Veterinaria Lasallista.

- Describir las ondas electrocardiográficas en términos de amplitud, frecuencia, voltaje y morfología en equinos CCC hospitalizados en la Clínica Veterinaria Lasallista
3 MARCO TEÓRICO

3.1 Anatomía cardiaca

El corazón es un músculo dividido en cuatro cámaras el cual envía sangre a través de dos circuitos separados, pulmonar y sistémico. Estas cuatro cámaras son dos atrios y dos ventrículos, los cuales llevan nombre de “corazón izquierdo” y “corazón derecho” sabiendo que cada corazón contiene un atrio y un ventrículo. Tanto el corazón izquierdo como el derecho están separados por válvulas atrioventriculares, válvula mitral y válvula tricúspide, izquierda y derecha respectivamente (Rubio, 1995). Para un correcto ciclo cardiaco, o para una adaptación cardiaca, el funcionamiento eléctrico debe ser armónico y estimulante a dicho músculo. Por consecuente la actividad eléctrica es fundamental para generar un adecuado ciclo cardiaco (Santisteban, 1995).

3.2 Actividad eléctrica del corazón

El sistema eléctrico cardiaco está compuesto básicamente de: nodo sinoatrial (NSA) localizado en la pared de la aurícula derecha, el nodo atrioventricular (NAV) ubicado en el cara ventral de las aurículas e iniciando los ventrículos, el haz de Hiss se sitúa por el septo interventricular y fibras de Purkinje siendo ubicadas en las paredes internas de ambos ventrículos (Dörner, 2009). Este conjunto de células especializadas no nerviosas, se denomina sistema de conducción especializado cardiaco o actividad eléctrica del corazón.
El potencial se origina en el NSA, este atraviesa ambas aurículas, en primer lugar la derecha donde se ubica el NSA y a continuación a la aurícula izquierda. Tras esta activación auricular, se da la activación del NAV la cual da inicio a la excitación ventricular y este continúa el impulso transmitido por el haz de Hiss y se propaga hasta los extremos distales de las fibras de Purkinje (Santisteban R, 1995). El músculo cardiaco refleja muchos cambios y adaptaciones dependiendo del estado del animal, ya sea en estrés deportivo, o necesidades metabólicas requeridas o patologías donde comprometan su funcionamiento (Marr, 2004).

3.3 Electrocardiograma

El electrocardiograma es un método no invasivo que facilita evaluar y observar problemas cardiacos, mide el sistema eléctrico del corazón haciendo un esquema del potencial de acción cardiaco en un conjunto, pudiendo así marcar trazos equivalentes a los cambios de la actividad eléctrica, la despolarización y repolarización cardiaca (Cunningham, 2003). Estos cambios de voltaje son los que el electrocardiógrafo va a detectar y a traducir de la siguiente manera: la onda P es la despolarización de las aurículas. La onda de recuperación auricular, de bajo voltaje, no suele apreciarse en el electrocardiograma (ECG) puesto que queda enmascarada por el complejo ventricular. El paso de la onda de excitación por el NAV y el haz de Hiss se registra en una línea recta, que recibe el nombre de segmento P-Q. El siguiente grupo de ondas corresponde a la despolarización ventricular denominado complejo QRS. La última onda, la onda T se refiere a la repolarización ventricular (Young, 2010). En la derivación base ápex (BA), los electrodos son utilizados de la siguiente manera: un electrodo
negativo en la zona más ventral de la región cervical derecha, un electrodo positivo en la región precordial izquierda, y uno neutral en la región supra-escapular izquierda, así el ciclo cardiaco produce un registro de ondas de despolarización, onda P y complejo QRS y onda T, esta última equivalente a la repolarización. En dicho electrocardiograma, es necesario observar cualquier cambio anómalo que pueda acontecer en la actividad eléctrica del corazón; un ejemplo son los caballos deportistas, donde existen fibrilaciones auriculares (despolarizaciones fuera de ritmo) y es necesario determinar la gravedad de su arritmia sobre el tipo de trabajo que realiza (Mary, 2003).
4 MATERIALES Y MÉTODOS

4.1 Animales

Se muestrearon 57 caballos Criollo Colombiano que estuvieron hospitalizados en la Clínica Veterinaria Lasallista con alta médica que evidenciara su buen estado de salud y en estado de reposo para el momento del electrocardiograma. El grupo estaba compuesto por caballos en entrenamiento, en proceso de doma y sin doma.

Los animales se dividieron en tres grupos etarios los cuales fueron: 1 a 5 años, 6 a 10 años y mayores de 11 años.

4.2 Electrocardiogramas

Los equinos fueron sometidos a un examen clínico general. Siendo introducidos en un brete, se hizo énfasis en la auscultación cardiaca para medir su tono, ritmo y frecuencia en reposo. Ningún animal fue sedado durante el examen electrocardiográfico. Se continuó con la realización del electrocardiograma en base-ápex. Se utilizó un electrocardiógrafo TM 300 V (PC based ECG) para uso veterinario Temis Tecnología®. La derivación base-ápex (BA) es obtenida de la siguiente manera: Electrodo positivo (verde) en el quinto espacio intercostal del lado izquierdo, a la altura del codo. El electrodo negativo (rojo) se fija a la piel en el surco yugular derecho, a dos tercios de distancia en el trayecto desde la rama mandibular derecha a la entrada del pecho. El electrodo neutro (negro) sobre la espalda o en cualquier punto alejado del corazón. Se continúa rociando con alcohol los electrodos mencionados y así mejorar el traspaso eléctrico desde el animal hacia el ECG.
4.3 **Recolección de la información**

La información obtenida por los investigadores se guardó en la base de datos del respectivo software del electrocardiógrafo, se midieron las ondas y los segmentos en dicho software y esos datos fueron almacenados en planillas de Excel ®.

4.4 **Análisis de la Información**

Se analizaron de manera independiente las variables del estudio y de ellas se obtuvieron medidas de tendencia central (media y mediana), de dispersión (desviación estándar y rango intercuartil) y de posición (percentiles 25 y 75); para determinar la medida de tendencia central a analizar se hizo prueba de normalidad D'Agostino & Pearson. Para el caso de la onda P y T bifidas, fue analizada la presencia o ausencia en términos de frecuencia.

Posteriormente se compararon las medias de cada variable entre grupos de edad por medio de análisis de varianza (ANOVA de una vía, y prueba de Kruskal-Wallis). Se asumió significancia estadística si el valor de P<0,05 (GraphPad Prism versión 5.01 para Windows (GraphPad Software, San Diego, California, EUA). Se hizo un análisis de correlación entre los parámetros del ECG y el peso, edad y sexo de los animales (Spearman r). También se evaluó la correlación entre la frecuencia cardíaca y los demás parámetros del ECG. Se asumió significancia estadística si el valor de P<0,05.
5 RESULTADOS

Los 57 animales a los cuales se hicieron los ECG mencionados en la metodología, se dividieron en tres grupos etarios los cuales fueron: 1 a 5 años (tabla 1 y 2), 6 a 10 años (tabla 3 y 4) y mayores de 11 años (tabla 5 y 6).

5.1 Animales de 1 a 5 años (25)

Tabla 1 y 2. Estadística descriptiva para rango entre 1-5 años

Tabla 1.

<table>
<thead>
<tr>
<th></th>
<th>FC (lpm)</th>
<th>Int RR (ms)</th>
<th>Dur. P (mS)</th>
<th>Amp.P (mV)</th>
<th>Amp.R (mV)</th>
<th>Amp.T (mV)</th>
<th>Int.PR (mS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Media</td>
<td>56,72</td>
<td>1122</td>
<td>95,73</td>
<td>0,31</td>
<td>1,84</td>
<td>0,53</td>
<td>209,4</td>
</tr>
<tr>
<td>Des.Est</td>
<td>13,79</td>
<td>280,8</td>
<td>25,85</td>
<td>0,08</td>
<td>0,58</td>
<td>0,19</td>
<td>47,14</td>
</tr>
<tr>
<td>Error. Est</td>
<td>2,75</td>
<td>56,16</td>
<td>5,16</td>
<td>0,01</td>
<td>0,11</td>
<td>0,03</td>
<td>9,42</td>
</tr>
<tr>
<td>Percentil 25</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Mediana</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Percentil 75</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Int.Conf 95% lim.Inf</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Int.Conf 95%lim.Sup</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Tabla 2.

<table>
<thead>
<tr>
<th></th>
<th>Seg.PR (mS)</th>
<th>IntQRS (mS)</th>
<th>Int.QT (mS)</th>
<th>Int.QTc (mS)</th>
<th>Int. ST (mS)</th>
<th>Seg.ST (mS)</th>
<th>Int_PP (mS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Media</td>
<td>-</td>
<td>104,5</td>
<td>492,4</td>
<td>461</td>
<td>391,9</td>
<td>187,7</td>
<td>1128</td>
</tr>
<tr>
<td>Des.Est</td>
<td>-</td>
<td>14,5</td>
<td>137,5</td>
<td>76,93</td>
<td>145,5</td>
<td>41,79</td>
<td>288,6</td>
</tr>
<tr>
<td>Error. Est</td>
<td>-</td>
<td>2,9</td>
<td>27,5</td>
<td>15,39</td>
<td>29,09</td>
<td>8,35</td>
<td>57,73</td>
</tr>
<tr>
<td>Percentil 25</td>
<td>93,34</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Mediana</td>
<td>110</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Percentil 75</td>
<td>135</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Int.Conf 95%lim.Inf</td>
<td>49,29</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Int.Conf 95%lim.Sup</td>
<td>289,4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
5.2 Animales de 6 a 10 años (21)

Tabla 3 y 4. Estadística descriptiva para rango entre 6 y 10 años

Tabla 3.

<table>
<thead>
<tr>
<th></th>
<th>FC (lpm)</th>
<th>Int.RR (mS)</th>
<th>Dur.P (mS)</th>
<th>Amp.P (mV)</th>
<th>Amp.R (mV)</th>
<th>Amp.T (mV)</th>
<th>Int.PR (mS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Media</td>
<td>54,05</td>
<td>1191</td>
<td>114,9</td>
<td>0,27</td>
<td>1,83</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Des.Est</td>
<td>14,91</td>
<td>318,9</td>
<td>26,72</td>
<td>0,06</td>
<td>0,31</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Error. Est</td>
<td>3,25</td>
<td>69,6</td>
<td>5,831</td>
<td>0,01</td>
<td>0,06</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Percentil 25</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0,35</td>
<td>208,3</td>
</tr>
<tr>
<td>Mediana</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0,5</td>
<td>230</td>
</tr>
<tr>
<td>Percentil 75</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0,69</td>
<td>283,3</td>
</tr>
<tr>
<td>Int.Conf 95% lim. Inf</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0,43</td>
<td>221</td>
</tr>
<tr>
<td>Int.Conf 95% lim. Sup</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0,64</td>
<td>275,8</td>
</tr>
</tbody>
</table>

Tabla 4.

<table>
<thead>
<tr>
<th></th>
<th>Seg.PR (mS)</th>
<th>Int.QRS (mS)</th>
<th>Int QT (mS)</th>
<th>Int QTc (mS)</th>
<th>Int. ST (mS)</th>
<th>Seg ST (mS)</th>
<th>Int.PP (mS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Media</td>
<td>-</td>
<td>100,6</td>
<td>508,3</td>
<td>460,4</td>
<td>-</td>
<td>187</td>
<td>1186</td>
</tr>
<tr>
<td>Des.Est</td>
<td>-</td>
<td>11,19</td>
<td>138,5</td>
<td>76,12</td>
<td>-</td>
<td>46,82</td>
<td>311,2</td>
</tr>
<tr>
<td>Error. Est</td>
<td>-</td>
<td>2,44</td>
<td>30,22</td>
<td>16,61</td>
<td>-</td>
<td>10,22</td>
<td>67,9</td>
</tr>
<tr>
<td>Percentil 25</td>
<td>95</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>315</td>
<td>-</td>
</tr>
<tr>
<td>Mediana</td>
<td>126,7</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>396,7</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Percentil 75</td>
<td>158,3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>551,7</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Int.Conf 95% lim. Inf</td>
<td>110,1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>215,5</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Int.Conf 95% lim. Sup</td>
<td>156,9</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>942,6</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
5.3 Animales mayores de 11 años (11)

Tabla 5 y 6. Estadística descriptiva para animales mayores de 11 años

Tabla 5.

<table>
<thead>
<tr>
<th></th>
<th>FC (lpm)</th>
<th>Int RR (mS)</th>
<th>Dur. P (mS)</th>
<th>Amp. P (mV)</th>
<th>Amp.R (mV)</th>
<th>Amp.T (mV)</th>
<th>Int.PR (mS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Media</td>
<td>46,73</td>
<td>-</td>
<td>117,6</td>
<td>0,33</td>
<td>-</td>
<td>0,51</td>
<td>263</td>
</tr>
<tr>
<td>Des.Est</td>
<td>7,63</td>
<td>-</td>
<td>24,36</td>
<td>0,1</td>
<td>-</td>
<td>0,18</td>
<td>38,63</td>
</tr>
<tr>
<td>Error. Est</td>
<td>2,3</td>
<td>-</td>
<td>7,34</td>
<td>0,03</td>
<td>-</td>
<td>0,05</td>
<td>11,65</td>
</tr>
<tr>
<td>Percentil 25</td>
<td>-</td>
<td>1050</td>
<td>-</td>
<td>-</td>
<td>1,46</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Mediana</td>
<td>-</td>
<td>1323</td>
<td>-</td>
<td>-</td>
<td>1,85</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Percentil 75</td>
<td>-</td>
<td>1457</td>
<td>-</td>
<td>-</td>
<td>2,26</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Int.Conf 95% lim. Inf</td>
<td>-</td>
<td>41,6</td>
<td>-</td>
<td>-</td>
<td>1,52</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Int.Conf 95% lim. Sup</td>
<td>-</td>
<td>51,85</td>
<td>-</td>
<td>-</td>
<td>2,34</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Tabla 6.

<table>
<thead>
<tr>
<th></th>
<th>Seg.PR (mS)</th>
<th>Int QRS (mS)</th>
<th>Int QT (mS)</th>
<th>Int. QT c (mS)</th>
<th>Int. ST (mS)</th>
<th>Seg. ST (mS)</th>
<th>Int.PP (mS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Media</td>
<td>145,5</td>
<td>105,8</td>
<td>530,6</td>
<td>473</td>
<td>409,4</td>
<td>-</td>
<td>1317</td>
</tr>
<tr>
<td>Des.Est</td>
<td>47,31</td>
<td>10,01</td>
<td>99,96</td>
<td>71,64</td>
<td>122,1</td>
<td>-</td>
<td>225,7</td>
</tr>
<tr>
<td>Error. Est</td>
<td>14,26</td>
<td>3,01</td>
<td>30,06</td>
<td>21,6</td>
<td>36,81</td>
<td>-</td>
<td>68,06</td>
</tr>
<tr>
<td>Percentil 25</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>156,7</td>
<td>-</td>
</tr>
<tr>
<td>Mediana</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>176,7</td>
<td>-</td>
</tr>
<tr>
<td>Percentil 75</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>220</td>
<td>-</td>
</tr>
<tr>
<td>Int.Conf 95% lim. Inf</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>160,5</td>
<td>-</td>
</tr>
<tr>
<td>Int.Conf 95% lim. Sup</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>227,4</td>
<td>-</td>
</tr>
</tbody>
</table>
5.4 Animales totales (57)

Tabla 7 y 8. Estadística descriptiva para animales totales

Tabla 7.

<table>
<thead>
<tr>
<th></th>
<th>FC (lpm)</th>
<th>Int RR (mS)</th>
<th>Dur. P (mS)</th>
<th>Amp. P (mV)</th>
<th>Amp. R (mV)</th>
<th>Amp. T (mV)</th>
<th>Int.PR (mS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Media</td>
<td>53.81</td>
<td>1169</td>
<td>107</td>
<td>0,3</td>
<td>1.86</td>
<td>0,53</td>
<td>-</td>
</tr>
<tr>
<td>Des.Est</td>
<td>13.6</td>
<td>319,8</td>
<td>27,38</td>
<td>0,08</td>
<td>0,49</td>
<td>0,2</td>
<td>-</td>
</tr>
<tr>
<td>Error. Est</td>
<td>1,8</td>
<td>42,35</td>
<td>3,62</td>
<td>0,01</td>
<td>0,06</td>
<td>0,02</td>
<td>-</td>
</tr>
<tr>
<td>Percentil 25</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>200</td>
</tr>
<tr>
<td>Mediana</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>230</td>
</tr>
<tr>
<td>Percentil 75</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>256,7</td>
</tr>
<tr>
<td>Int.Conf 95% lim. Inf</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>219,5</td>
</tr>
<tr>
<td>Int.Conf 95% lim. Sup</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>248,7</td>
</tr>
</tbody>
</table>

Tabla 8.

<table>
<thead>
<tr>
<th></th>
<th>Seg PR (mS)</th>
<th>Int RR (mS)</th>
<th>Int. QT (mS)</th>
<th>Int. QTc (mS)</th>
<th>Int. ST (mS)</th>
<th>Seg ST (mS)</th>
<th>Int.PP (mS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Media</td>
<td>-</td>
<td>103,3</td>
<td>505,6</td>
<td>463,1</td>
<td>-</td>
<td>188,6</td>
<td>1186</td>
</tr>
<tr>
<td>Des.Est</td>
<td>-</td>
<td>12,54</td>
<td>130,1</td>
<td>74,47</td>
<td>-</td>
<td>44,5</td>
<td>290,3</td>
</tr>
<tr>
<td>Error. Est</td>
<td>-</td>
<td>1,66</td>
<td>17,23</td>
<td>65,88</td>
<td>-</td>
<td>5,89</td>
<td>38,44</td>
</tr>
<tr>
<td>Percentil 25</td>
<td>98,34</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>305</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Mediana</td>
<td>123,3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>366,7</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Percentil 75</td>
<td>151,7</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>491,7</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Int.Conf 95% lim. Inf</td>
<td>99,89</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>332,2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Int.Conf 95% lim. Sup</td>
<td>203,1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>596,2</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
El análisis de correlación de cada una de las variables con el peso, sexo y edad fue hecho con el grupo completo de equinos (57 animales) con prueba de Spearman r. Se encontró una correlación negativa débil entre la FC \((r = -0,3385)\), amplitud de P \((r = -0,3020)\) y el peso; positiva débil entre el intervalo RR \((r = 0,3002)\), intervalo PP \((r = 0,3375)\) y el peso, y positiva fuerte entre la duración de la onda P \((r = 0,3967)\), intervalo PR \((r = 0,5336)\), y el peso. Con respecto a la edad fue encontrada una correlación negativa débil con la FC \((r = -0,2726)\), con el intervalo PP \((r = 0,2851)\), y positiva fuerte con la duración de P \((r = 0,4069)\) y el intervalo PR \((r = 0,4820)\). Para el sexo el único hallazgo fue una correlación positiva débil con la amplitud de R en los machos \((r = 0,2982)\). También se evaluó coeficiente de correlación entre FC y duración de P (sin correlación), intervalo RR, PR, QT (correlaciones negativas fuertes, \(r = -0,982\), \(r = -0,644\), \(r = -0,821\), respectivamente e intervalo QRS (sin correlación).
6 DISCUSIÓN

El objetivo principal de los investigadores en este trabajo fue analizar y encontrar una estandarización de las variables del ECG en CCC. Los trabajos reportados hasta el momento son basados en diferentes razas a nivel mundial pero el material disponible en CCC es escaso, dificultando un buen diagnóstico y/o análisis cardiológico. Hasta el momento sólo se encuentra un reporte en caballos criollos no registrados en la raza. Los resultados obtenidos en este estudio se pudieron comparar con variables reportadas en diferentes razas a nivel mundial como lo son caballos de salto, caballos Pie de monte Llanero, burro Zamorano, caballos de Polo y caballo Turcomano (Tabla 9).

Tabla 9 comparación de algunas de las variables obtenidas del CCC con diferentes razas (media ± desviación estándar)

<table>
<thead>
<tr>
<th>Variable</th>
<th>CCC en BA</th>
<th>Caballos de salto en BA</th>
<th>Pie de monte Llanero en DII</th>
<th>Burro Zamorano en BA</th>
<th>Caballos de Polo en DII</th>
<th>Caballo Turcomano en BA</th>
</tr>
</thead>
<tbody>
<tr>
<td>FC (lpm)</td>
<td>53,81 ± 13,60</td>
<td>40,20 ± 13,33</td>
<td>45,11 ± 10,75</td>
<td>-</td>
<td>37,30 ± 7,28</td>
<td>34,24 ± 051</td>
</tr>
<tr>
<td>Dur. P (mS)</td>
<td>107 ± 27,38</td>
<td>122 ± 26</td>
<td>60 ±30</td>
<td>95 ± 40</td>
<td>143,54 ± 19,28</td>
<td>128 ± 30</td>
</tr>
<tr>
<td>Amp. P (mV)</td>
<td>0,3 ± 0,08</td>
<td>0,26 ± 0,07</td>
<td>0,14 ± 0,06</td>
<td>0,13 ± 0,03</td>
<td>0,2 ± 0,08</td>
<td>0,20 ± 0,008</td>
</tr>
<tr>
<td>Amp. R (mV)</td>
<td>1,86 ± 0,49</td>
<td>1,02 ± 0,50</td>
<td>0,63 ± 0,61</td>
<td>0,31 ± 0,108</td>
<td>0,24 ± 0,18</td>
<td>0,23 ± 0,02</td>
</tr>
<tr>
<td>Int. QRS (mS)</td>
<td>103,3 ±12,54</td>
<td>91 ± 25</td>
<td>160 ±160</td>
<td>68 ± 1</td>
<td>138,15 ± 14,77</td>
<td>112 ± 50</td>
</tr>
<tr>
<td>Amp. T (mV)</td>
<td>0,53 ± 0,20</td>
<td>0,44 ± 0,20</td>
<td>0,12 ±0,29</td>
<td>0,13 ± 0,014</td>
<td>0,60 ± 0,40</td>
<td>0,59 ± 0,05</td>
</tr>
</tbody>
</table>

Se puede observar que los valores obtenidos en el CCC son similares a algunas razas, teniendo en cuenta que no se usó la misma metodología para la obtención de los datos. En los datos obtenidos por Corredor, J., Beltran, D., Báez, J. (2005) en caballos Pie de monte llanero no se usó la estandarización en base-apex, usaron otras derivadas como dos (DII) y tres (DIII) (las derivadas se categorizan dependiendo de la dirección que mida el voltaje desde el electrodo de una extremidad anterior a un voltaje de extremidad posterior), ya que los principales fenómenos de las ondas P, R y T en el ECG son normalmente evidentes en las derivaciones DI, DII y DIII (Cunningham, 2003). Sin embargo, este estudio se realizó en BA donde se ha reportado que esta derivada logra más eficiente la detección de cualquier arritmia (arritmias fisiológicas, bloqueo auriculo-ventricular de segundo grado, bloqueo sino-auricular) alterando alguna variable del ECG, y su disposición permite fácilmente la lectura. También se ha demostrado que el animal acepta mejor la localización de los electrodos en la derivada mencionada (Marr, 2004). Las derivadas pudieron tener influencia en la obtención de los datos de caballos de Pie de Monte Llanero ilustrados en la tabla 9.

La onda P es el tiempo que tarda la despolarización eléctrica en desplazarse a través de los atrios. Cuando se agranda la masa muscular cardiaca (por edad, adaptación al deporte, y/o alguna patología específica), la amplitud de dicha onda podría aumentar (mS) (Honda, 2013). Por otro lado, la onda P puede presentarse algunas veces de forma bifásica o mellada, dado a su tamaño atrial (Verheyen, 2010). En este estudio la estadística arrojo un 50,88% con onda P bifásica. Podría deberse a
la condición atlética y cambios morfológicos cardíacos del CCC, como ejemplo de adaptación cardiaca.

Como se menciona anteriormente, el corazón ejerce algunas adaptaciones al ejercicio intenso y una de ellas es bajar su FC (Lightowler, 2004) y según Honda et al. 2013 los equinos deportivos mantienen la FC en rangos inferiores en estado de reposo, una vez se someten al deporte, el corazón trabajará con menos esfuerzo. Esto se relaciona a una disminución progresiva de la FC como parte de adaptación del sistema cardiovascular al ejercicio (Diniz, 2011; Honda, 2013). De acuerdo con Lightowler et al. 2004 y Honda et al. 2013 donde reportan que la FC y la onda P en animales deportivos demuestran una disminución y aumento en su amplitud respectivamente, como se puede observar en la tabla 10, donde a mayor edad la FC tiende a bajar y la duración de la onda P aumenta, aunque estadísticamente no se encontró relevancia alguna con respecto a la edad. A pesar de que en equinos no es eficiente la medición de las cámaras cardíacas por medio de ECG, es posible observar un leve aumento en la duración de la onda P con respecto a la edad, lo cual puede ser debido a que más años o más entrenamiento, más masa muscular, lo que tal vez puede suceder en el CCC pero no fue detectado estadísticamente.
Tabla 10. Comparación de la FC y duración de la onda P en las diferentes edades.

<table>
<thead>
<tr>
<th></th>
<th>CCC 6-10 años</th>
<th>CCC mayores de 11 años</th>
</tr>
</thead>
<tbody>
<tr>
<td>FC (lpm)</td>
<td>54,05 ± 14,91</td>
<td>46,73 ± 7,630</td>
</tr>
<tr>
<td>Dur. P (mS)</td>
<td>114,9 ± 26,72</td>
<td>117,6 ± 24,36</td>
</tr>
</tbody>
</table>

También se han reportado discusiones sobre la onda T y sus aplicaciones clínicas, sin embargo algún estado que altere el comportamiento cardiaco como una hipoxia (por ejercicio intenso por ejemplo), alteraciones electrolíticas, fármacos, enfermedades infecciosas, el tono vagal y hasta emociones pueden llegar a alterar los patrones de la onda T (Bello, 2004), independiente que sea negativa o positiva, mostrando alteraciones en el ECG, pudiendo tener significancia clínica o no (Alidadi, 2002; Bello, 2004). Como lo menciona Bello et al. (2004) cuantificar el significado de la onda T en un diagnóstico es altamente difícil. Los únicos cambios en la onda T reportadas en los caballos de rendimiento deportivo solo muestran cambios en la inversión de polaridad y amplitud. Por ende, para comprender los cambios de la onda T en el deporte equino es necesario realizar estudios más complejos, el uso de varias derivaciones por ejemplo es el mejor medio para determinar exactamente el final de la onda T (Diniz, 2011). No obstante, La onda T bifásica está compuesta de dos puntos de entonación con respecto a la línea isoeléctrica del ECG, dado el punto de modulación abre el paso de una dirección horizontal o descendente pudiendo tener significancia clínica o no (Lightowler, 2004), En el caso del CCC fueron observadas ondas T bifásicas en 70,18% de los animales. No se encontró algo relevante respecto a
la onda, como diferencias entre grupos de edad o correlación con el peso o el sexo, no pudiendo establecer alguna relación con el estado de salud de los animales, pues fueron seleccionados clínicamente sanos.

El ejercicio parece no tener efectos contundentes sobre el complejo QRS, sin embargo, cuando la FC aumenta (por ejercicio por ejemplo), aumenta la fuerza contráctil del miocardio y acelera la propagación excitación causando un posible acortamiento del complejo QRS (Bello, 2012; Honda, 2013). Según Honda et al. (2013) donde reporta que el aumento de la duración del intervalo QRS no es significativo. Como es reportado por Lightowler et al. 2004 donde correlacionan el peso del animal con el peso del corazón, asumiendo que son directamente proporcionales, entre mayor peso animal mayor es su masa cardiaca. Sabiendo que el complejo QRS depende de la despolarización de tejido muscular, entre más masa muscular cardiaca mayor va hacer la conducción eléctrica y la amplitud y duración del complejo QRS se verá afectado. Sin embargo en su estudio no se encontró significancia estadística. Respecto al sexo, asumiendo que el macho tiene mayor ganancia muscular se espera que la amplitud del complejo QRS sea mayor respecto a las hembras (Honda, 2013). No obstante, en el CCC no se observa significancia estadística respecto al sexo, seguramente por no tener un numero de muestra igualitario, para así poderse comparar y correlacionar. Las diferencias de edades también quedan grupos muy divididos y es difícil encontrar correlaciones, se recomiendan otros estudios con otra selección de los animales.
Respecto al intervalo Q-T, en humanos se ha descrito que el entrenamiento intenso provoca aumento de la masa cardiaca, y un 30% de ello se asocia con un intervalo QT prolongado (Pedersen, 2013). En el CCC, viéndolo como animales atletas podría mostrar alguna alteración como es mencionado por Pedersen et al. 2013 donde también describe en su estudio que en animales castrados se evidencia un intervalo Q-T corto. Esto podría complementar la correlación respecto al sexo en su estudio, evidenciando que las hormonas masculinas pueden conllevar un papel importante sobre la masa muscular. Según Bello et al. 2012 el estudio sobre el intervalo Q-T requiere mucho más estudios detallados, inclusive con animales que presenten alguna patología que altere el ECG de las antes mencionadas. Tal vez en este estudio no fue posible evidenciar cambios significativos de este intervalo pues los animales eran clínicamente sanos.

El intervalo P-R Es el tiempo que transcurre entre el final de la onda P y la mitad de la despolarización del complejo QRS, es decir el intervalo que transcurre entre el final de la contracción auricular y el comienzo de la contracción ventricular (Diniz, 2011). En animales con masa muscular en estado de hipertrofia (fisiológica por edad o patológica) probablemente por ejercicio en el CCC, tal vez por la exigencia de los movimientos a los que está expuesto, en reposo se puede encontrar intervalos P-R más largo de lo normal, por la intensa estimulación vagal del corazón ya antes mencionado o por bloqueos atrio-ventriculares de primer grado sin importancia clínica, ya que suele desaparecer al aumentar el ritmo cardiaco mientras el estímulo del tono vagal se va disminuyendo (Dörner, 2009). Por otro lado, según Honda et al. 2013
donde reporta que el peso (asumiendo que animales entre más edad, mayor ganancia muscular), y la edad fisiológicamente su FC va ir disminuyendo observándose un aumento en el intervalo P-R, concordando con la correlación de la FC con respecto al peso y edad demostrada en este estudio. En la tabla 11, se observa la misma apreciación al grosor muscular cardiaco antes mencionado. A mayor edad se observa un leve incremento en el int P-R (mS) el cual estadísticamente no es significativo, lo cual coincide con lo publicado por Diniz, et al. 2011, quienes plantean que la influencia del tono vagal por aumento de la masa cardiaca puede hacer que el intervalo P-R varíe, aunque estadísticamente en su estudio no encontró variaciones relevantes. Sin embargo ese leve aumento del intervalo, puede ser debido al aumento del tamaño cardiaco y consecuente el peso del animal.

Tabla 11. Intervalo P-R en grupos etarios del CCC (media ± desviación estándar)

<table>
<thead>
<tr>
<th></th>
<th>CCC de 1 a 5 años</th>
<th>CCC de 6-10 años</th>
<th>CCC mayores de 11 años</th>
</tr>
</thead>
<tbody>
<tr>
<td>Int P-R (mS)</td>
<td>209,4 ± 47,14</td>
<td>248,4 ± 38,63</td>
<td>263 ± 38,63</td>
</tr>
</tbody>
</table>

Con respecto al intervalo ST, Diniz et al. (2011) encontró que una alteración de desnivel en el intervalo podría indicar hipoxia miocárdica, cambios de pH y potasio. Por ende, reportan que el desnivel del intervalo ST por encima de 0,3 mv podría ser una señal de endotoxemia o dolor abdominal, así como trastornos electrolíticos (Bello,
2004). En el CCC no se evidencio tal desnivel lo que podría deberse a lo antes ya mencionado, eran en animales totalmente sanos.
7 CONCLUSIONES

Los resultados obtenidos en este estudio se pudieron evaluar y comparar con valores electrocardiográficos en equinos de otras, y se logró observar que está dentro de los mismos rangos.

Debido a las características del corazón del caballo, no es tan fácil establecer correlaciones de los parámetros del ECG con variables como la edad, el peso y el sexo. Se recomienda incluir evaluaciones con ecocardiografía, y evaluar en diferentes derivaciones ECG y así complementar el estudio, por ende se destaca los resultados obtenidos en este estudio, sumado a los valores estandarizados de las diferentes razas. Sin embargo fue posible observar algunas de estas correlaciones, cuyo estudio puede ser ampliado usando técnicas asociadas como la ecocardiografía.
REFERENCIAS

Lightowler, C., Pidal, G., Cattáneo, L. (2001). Estudio cuantitativo de la ecocardiografía equina. Avances en ciencias veterinarias, 6 (1) y (2) 21-31

Mary M., (2003). Clinical Techniques for Diagnosing Cardiovascular Abnormalities in Performance Horses. ELSEVIER. *Clinical Techniques in Equine Practice*, 2 (3) 266-277

